Research groups

Wireless Networks
Wireless Networks (WINE)
Introduction

The Wireless Networks (WINE) Research Group pioneers technologies that improve the way devices communicate. These technologies are present in our lives, through smart phones, home networks, vehicles and connected appliances. They are also present in our ecosystems and habitat, in cities, roads and large infrastructures, providing seamless connectivity to gather information and monitor and control their operation. They can also be found in industriesequipped with new generations of wireless technologies, where their operative information is used to improve processes and reduce operating costs while increasing sustainability. Our primary interest is in helping industries, cities, infrastructure operators and people to benefit from Internet-enabled objects and contribute to a more sustainable Internet of Thingsby optimizing aspects of their operation and underlying technology.

More information: http://wine.rdi.uoc.edu/

Go to top
Members
Research lines

Industrial IoT(IIoT) and M2M networks

In this research line we study in-depth industrial networks and contribute to their standardization. Industrial networks have developed alongside the traditional Internet. This is because an industrial network (an “operational technology”– OT) has requirements that are very different from the Internet (an “information technology” – IT). While the Internet is built to interconnect billions of heterogeneous devices communicating large amounts of data over a long distance, an industrial network is typically deployed within a factory floor, typically connecting 100s or 1,000s of devices. Although the amount of data in typical industrial process applications may not be large, what is critical are reliability (that all data is received by its final destination), latency (using guaranteed time bounds, as opposed to best-effort) and battery lifetime. Popular wireless link layers (based on carrier sense multiple access – CSMA) do not meet these expectations; thus, industrial networks have remained traditionally wired. The cost and the operative limitations of wired networks are triggering a new generation of wireless communication technologies and ongoing standards thatare shifting the connectivity paradigm in industries and drastically reducing operating costs. From a practical perspective,WINE focuses on the convergence of these technologies with the current Internet infrastructure (IP-enabled), including routing, scheduling, energy efficiency, resource sharing and optimization techniques to develop the basis for communications of the Industrial Internet of Things.

Contextual intelligence in the Internet of Everything (IoE)

Ubiquitous computing, together with wireless networking, is enabling the Internet of Everything, where information systems, people and a wide variety of objects are becoming seamlessly interconnected. However, bringing objects to the Internet presents challenges regarding data throughput, number of devices, power consumption or read range. Most of these challenges have to do with the context of where the communication devices are placed, and thus, “understanding” that context is key for IoE performance improvement.

The information obtained in IoE scenarios can be exploited in combination with combinatorial optimization techniques to facilitate the development and understanding of complex dynamics in real environments such as cities, roads or dynamic systems in general.

Based on this concept, this research line aims to extract context-aware information to improve “Internet of Everything” networking technologies such as RFID, 802.15.4 or other low-power networks. By using information provided by sensors or radio frequency parameters, machine or other related learning techniques will be used to address current IoE challenges. The goal is to exploit contextual intelligence (on an individual or collaborative basis) to improve the quality and usability of the above networks in the context of smart cities or industrial scenarios.

Edge computing and software-defined networking

The huge impact of radio access network deployment on the CAPEX of infrastructure owners is being exacerbated in ultra-dense cellular networks. Moreover, in the aforementioned scenarios, the inefficiency of resources’ allocation has become one of the main drawbacks to boost the capacity of current and future cellular networks. Active radio access network sharing based on software-defined networking (SDN) emerges as a promising solution for 5G to cope with the ever-increasing infrastructure cost and the need for efficient resource allocation; however, the proposals defined so far are preliminary and cannot guarantee the quality of experience (QoE) offered by the multiple tenants sharing the RAN.

The WINE group is focused on the design of algorithms, architectures and technical solutions to improve the efficiency of the use of network resources in multi-tenant scenarios, where the joint optimization of communication and processing resources has become a necessity. The research line works on the joint design of virtualization of networked processing elements (VNEs and VNRs), caching solutions, traffic slicing, mobile-edge computing, etc. We also focus on the edges of the 5G network, including virtualization and software-defined capillary networking elements to improve the operation of the last hop infrastructure.

Mobility and radio resources management in 5G cellular networks

The main challenge of future cellular networks (also known as 5G) is to meet the ever-increasing demand for massive connectivity and massive capacity. Although it has been shown that these two objectives must be addressed from a manifold approach, the densification of the network and the exploitation of new spectrum bands arise as two possible enablers.

In this context, the research community has clearly drawn its attention tomillimetre wave (mmWave) bands, where bandwidths of up to 1 GHz could be allocated to cellular systems. These new spectrum bands are essential to fuel network capacity, but the propagation impairments at high frequencies, along with the highly directive antenna gains required to counteract them, pose new architectural and radio resources management challenges.

The group focuses, amongst others, on the design, development and evaluation of medium access control (MAC) layers to provide efficient mechanisms in mmWave bands, e.g. cell discovery, cell association, self-backhauling, etc.

Go to top
Open projects
Go to top