Tecnologías de la Información y de Redes

From Metaheuristics to Learnheuristics: Applications to Logistics, Finance, and Computing

Doctorado de Tecnologías de la Información y de Redes
12/07/2017

Autor: Laura Calvet Liñan
Programa: Doctorado de Tecnologías de la Información y de Redes
Idioma: inglés
Director: Dr. Àngel A. Juan y Dr. Carles Serrat
Departamento / Instituto: Escuela de Doctorado de la UOC
Materias: Informática
Palabras clave: metaheurísticas, optimización combinatoria, estadística, simheurísticas, logística
Área de conocimiento: Tecnologías de la Información y de Redes

 

Resumen

Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.