Autor: Armando Miguel Nieto Ranero
Programa: Doctorat de Tecnologies de la Informació i de Xarxes
Idioma: anglès
Directors:Dr. Angel A. Juan i Dra. Montserrat Guillen
Departament / Institut: Escola de Doctorat de la UOC
Matèries: Informàtica
Paraules clau: heurística, finances investigació operativa,ALM, gestió de carteres
Àrea de coneixement: Tecnologies de la Informació i de Xarxes
Resum
La gestió d'actius i passius (asset and liability management, ALM) ha acaparat l'atenció d'acadèmics i investigadors financers les darreres dècades. D'una banda, hem de mirar de maximitzar la nostra riquesa aprofitant el mercat financer, i de l'altra, hem de cobrir els nostres pagaments (passius) al llarg del temps. L'objectiu de l'ALM és dotar l'inversor d'una sèrie de recursos o tècniques per seleccionar els actius del mercat financer adequats per obeir als dos factors clau esmentats: complir els passius i maximitzar la nostra riquesa. Aquesta tesi presenta un conjunt de tècniques que són capaces d'abordar problemes financers realistes sense la necessitat habitual de recursos computacionals considerables. Aquestes tècniques es basen en l'heurística i la simulació. En concret, es desenvolupa un model metaheurístic esbiaixat que té una aplicació directa a l'operació habitual d'immunització de les companyies d'assegurances. L'algorisme permet seleccionar eficientment el menor nombre d'actius, principalment de renda fixa, al balanç i garantir les obligacions de la companyia. Aquest desenvolupament permet incorporar la qualitat creditícia de l'emissor dels actius utilitzats. Així mateix, es desenvolupa un model d'optimització de la cartera amb el passiu i es resol amb un algorisme genètic. El problema d'optimització de la cartera difereix de l'habitual en el fet que és multiperíode i incorpora els passius al llarg del temps. A més, s'inclou la possibilitat de finançament extern quan l'entitat no té prou efectiu. Aquestes condicions donen lloc a un problema complex que es resol eficientment mitjançant un algorisme evolutiu. En tots dos casos, els algorismes es milloren amb la incorporació de la simulació de Montecarlo. Això permet que les solucions siguin robustes quan considerem situacions de mercat realistes. Els resultats són molt prometedors. Aquesta recerca demostra que la simheurística és un mètode ideal per a aquesta mena de problemes.